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Abstract
The fundamental matrix factorizations of the D-model superpotential are found
and identified with the boundary states of the corresponding conformal field
theory. The analysis is performed for both GSO projections. We also comment
on the relation of this analysis to the theory of surface singularities and their
orbifold description.

PACS number: 11.25.Hf

1. Introduction

Models with N = (2, 2) worldsheet supersymmetry play a major role in various applications
of string theory, most notably in the context of Calabi-Yau compactifications, mirror symmetry
and the construction of four-dimensional string vacua. The simplest non-trivial theories with
superconformal symmetry are the N = 2 minimal models which have an ADE classification.
These models play a central role in the construction of Gepner models that describe certain
Calabi-Yau compactifications at specific points in their moduli space. In addition to their
realization as abstract conformal field theories, the N = 2 minimal models also have a
description as Landau Ginzburg theories. For the case of the D-model that shall mainly
concern us in this paper, the relevant superpotentials are

WD = x
n+1

2 − xy2, WD′ = x
n+1

2 − xy2 − z2. (1.1)

The two different choices correspond to the two possible GSO projections that can be imposed
in conformal field theory.

In this paper, we perform a complete analysis of the B-type branes in both of these theories.
These can be studied from two points of view: on the one hand, they have a description in
terms of boundary states in rational conformal field theory. On the other hand, according to
a proposal in unpublished work of Kontsevich, B-type branes in Landau Ginzburg models
can be characterized in terms of matrix factorizations of the superpotential. This proposal
was discussed in the physics literature in [1–8]. One would thus expect that the boundary
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state analysis in conformal field theory should agree with that of the D-branes in the Landau
Ginzburg theory. This was for example seen to be the case for the A-type models in [2, 4].

In the following we shall compare in detail the boundary states of the D-type minimal
models with the matrix factorizations of the corresponding Landau Ginzburg models.
Furthermore, we shall relate the matrix factorizations of the Landau Ginzburg superpotential
W to matrix factorizations that appear in the study of singularity theory. Surface singularities
can formally be related to Landau Ginzburg theories by studying the locus W = 0 as a
hypersurface in C

3. The matrix factorizations encode then the geometrical details of the
blow-ups necessary to resolve the surface singularity. Interpreted on the singular variety, they
also correspond to the elements of Orlov’s category DSg [9]. Our analysis suggests that the
Landau Ginzburg theory, despite having smaller central charge, captures some of the physical
properties of the D-branes on these surface singularities that become massless at the singular
point.

The paper is organized as follows. In section 2 we review the relation between matrix
factorizations and boundary states for the A-type minimal models. As explained in [4], adding
a square to the Landau Ginzburg superpotential corresponds to a change in the GSO projection
in conformal field theory. In section 3 we construct all B-type boundary states in the D-model
for both possible GSO projections. Since the D-model is a rational conformal field theory
(with respect to the N = 2 superconformal algebra), the boundary states we construct generate
all superconformal boundary states. In section 4 we discuss the matrix factorizations of the
corresponding Landau Ginzburg models, completing the list of factorizations provided in [4].
Once these additional factorizations are considered, we obtain complete agreement with the
conformal field theory description. On the other hand, since the latter description is complete
(in the above sense), we can conclude that the matrix factorizations we have found are all
the fundamental matrix factorizations for these superpotentials. This is to say, any matrix
factorization must be the direct sum of these fundamental factorizations. Our analysis also
confirms the conjecture of [4] regarding the relation between the different GSO projections in
conformal field theory and the addition of a square to the Landau Ginzburg model. Finally, in
section 5, we investigate the relation between D-branes on singular surfaces, the corresponding
Landau Ginzburg theories and conformal field theory. We also comment on the description
of the surface singularity in terms of the singular quotient C

2/�, where � is a subgroup of
SU(2). This allows us to use the methods of [10, 11] to describe D-branes on those orbifolds
in terms of representations of �. We find complete agreement with the results from the matrix
factorization point of view, confirming yet again that we have found all D-branes.

2. Matrix factorizations

Let us briefly review the description of D-branes in terms of matrix factorizations. This
approach was proposed in unpublished form by Kontsevich, and the physical interpretation of
it was given in [1–6]; for a good review of this material see for example [8].

According to Kontsevich’s proposal, D-branes in Landau Ginzburg models correspond to
matrix factorizations of the superpotential W(xi),

d0d1 = d1d0 = W1, (2.1)

where d0 and d1 are r × r matrices with polynomial entries in the xi . To a matrix factorization
of this form, one can then associate the boundary BRST operator Q of the form

Q =
(

0 d1

d0 0

)
. (2.2)
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The spectrum of open string operators consists of polynomial matrices of the same size. It
is naturally Z2 graded, where the bosons φ correspond to block-diagonal matrices, while the
fermions t are off-diagonal:

φ =
(

φ0 0
0 φ1

)
, t =

(
0 t1

t0 0

)
. (2.3)

To obtain the physical spectrum between two such branes, one restricts to the degree 0 operators
satisfying Dφ = [Q,φ] = 0, and identifies operators that differ only by BRST-exact terms.
To calculate this cohomology, we can follow the strategy of [4]. A BRST invariant boson has
to satisfy

d1φ1 = φ0d1 and d0φ0 = φ1d0, (2.4)

where φ0 and φ1 are r × r matrices. This equation can be solved for φ0 as

φ0 = 1

W
d1φ1d0, (2.5)

provided that the matrix on the right-hand side is divisible by W . After moding out Q-exact
terms, the bosonic cohomology can therefore be described using φ1 only. The BRST trivial
φ̃1 are derivatives of fermions, and hence take the form

φ̃1 = (Dt)1 = t0d1 + d0t1. (2.6)

For the fermions, the condition for BRST invariance is

t0d1 + d0t1 = 0 = d1t0 + t1d0, (2.7)

which can be solved for t1

t1 = − 1

W
d1t0d1, (2.8)

resulting again in a divisibility condition. An invariant fermion (t̃0, t̃1) is BRST trivial if t̃0

can be written as

t̃0 = −φ1d0 + d0φ0, (2.9)

for a boson (φ0, φ1).
It is easy to see that the spectrum of two factorizations Q and Q̂ is the same, if

Q = UQ̂U−1, U =
(

A 0
0 B

)
, (2.10)

provided that U and its inverse, U−1, are polynomial matrices. We therefore identify two such
factorizations [12].

For a given factorization Q, we call the factorization where the roles of d0 and d1 are
reversed the reverse factorization Qr . It is clear from the above discussion that the bosonic
spectrum between two factorizations Q1 and Q2 and the fermionic spectrum between Q1 and
Qr

2 coincide.
To make contact with conformal field theory, one has to make sure that the U(1)

R-symmetry that becomes the U(1) current symmetry of the N = 2 superconformal algebra
in the IR is preserved [7]. This means that one has to restrict to homogeneous superpotentials
and specify a consistent assignment of R-charge in the boundary theory. By (2.1) and (2.2)
this implies that Q should have charge one

eiλRQ(eiλqi xi) e−iλR = eiλQ. (2.11)

Then one can assign R-charge to the boundary operators by [7]

eiλRφ(eiλqi xi) e−iλR = eiλqφ. (2.12)
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This description of D-branes should then have a direct correspondence in conformal field
theory. In particular, the different factorizations (up to the aforementioned equivalence) should
correspond to the different B-type boundary states in conformal field theory. The physical
boson spectrum described above corresponds then to the topological open string spectrum from
the point of view of conformal field theory. The reverse factorization of a given factorization
corresponds to the anti-brane of the given brane; thus the physical fermion spectrum in the
above description corresponds to the topological open string spectrum between a brane and
an anti-brane.

In order to illustrate these concepts and set up notation for the rest of the paper, we briefly
review the case of the A-type minimal models.

2.1. A-type minimal models

In [2, 4] A-type minimal models were studied from the matrix point of view. For the potential

WA = xn (2.13)

it can be shown that a class of inequivalent matrix factorizations that generate all factorizations
are described by the simple rank 1 factorizations W = xlxn−l , where l = 1, . . . , n − 1. The
corresponding BRST operator is

Ql =
(

0 xl

xn−l 0

)
. (2.14)

The factorizations Ql and Qn−l are related to one another by the exchange of d0 and d1; they
are therefore reverse factorizations of one another.

The corresponding conformal field theory is described by a single N = 2 minimal model
with n = k + 2. (Our conventions are chosen as in [13].) The spectrum of this theory is (after
GSO projection)

HA =
⊕

[l,m,s]

(H[l,m,s] ⊗ H̄[l,m,−s]). (2.15)

The GSO projection chosen here is the analogue of the Type 0A projection. B-type branes are
characterized by the gluing conditions

(Ln − L̄−n)||B〉〉 = 0

(Jn + J̄−n)||B〉〉 = 0 (2.16)(
G±

r + iηḠ±
−r

) ||B〉〉 = 0.

The corresponding B-type boundary states were constructed some time ago (see, for example,
[14]), and are explicitly given as

||L, S〉〉 =
√

k + 2
∑

l+s∈2Z

SL0S,l0s√
Sl0s,000

|[l, 0, s]〉〉. (2.17)

Here L = 0, 1, . . . , k and S = 0, 1, 2, 3. The boundary states with S even (odd) satisfy the
gluing conditions with η = +1 (η = −1); in the following we shall restrict ourselves to the
case η = +1, and thus to even S.1 We also note that

||L, S〉〉 = ||k − L, S + 2〉〉 (2.18)

and thus there are only k + 1 different boundary states with η = +1 (and k + 1 different
boundary states with η = −1). These boundary states therefore account for all the N = 2

1 The D-branes corresponding to η = −1 or S odd preserve a different supercharge at the boundary. The branes that
are described by the different matrix factorizations however always preserve the same supercharge at the boundary.
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Ishibashi states. Finally we note that ||L, S〉〉 and ||L, S + 2〉〉 are anti-branes of one another
(since they differ by a sign in the coupling to the RR sector states).

It is then suggestive to identify the matrix factorization corresponding to Ql (2.14) with
the boundary state with label L = l − 1 and S = 0. The equivalence (2.18) mirrors the
factorization reversal map l �→ n− l on the matrix side. Restricting without loss of generality
to the range l � n/2 one can then easily check, both in conformal field theory and the matrix
language, that there are l topological states in the open string spectrum on each of these branes
(they correspond to the ‘bosons’ from the matrix point of view), and l topological states in the
open string spectrum between brane and anti-brane (the ‘fermions’ in the matrix description).

From the conformal field theory perspective it is immediately clear that there is another
closely related theory, where one uses a type 0B like GSO projection instead of the GSO
projection discussed above. The relevant Hilbert space is

HA′ =
⊕

[l,m,s]

(H[l,m,s] ⊗ H̄[l,m,s]). (2.19)

It was shown in [4] that from the matrix point of view this theory is described by the
superpotential

WA′ = xn − y2. (2.20)

Since the D-models that we shall discuss in this paper are closely related to this theory, let
us briefly summarize the results of [4] on factorizations and their relation to boundary states.
The superpotential WA′ has two classes of factorizations: the first class is given by

d0 =
(

xl y

−y −xn−l

)
, d1 =

(
xn−l y

−y −xl

)
. (2.21)

One can easily see that the factorization corresponding to l and n− l are equivalent in the sense
of (2.10); in the following we shall therefore always take l � n/2. Since these are reverse
factorizations of one another, the corresponding branes have to be their own anti-branes.

These factorizations are just a special class of the tensor product factorizations discussed
in [15]. In fact, they consist of one factor coming from the potential xn, and another one from
the ‘trivial’ factor y2 whose physical significance has been discussed in [1]. Accordingly, the
open string spectrum inherits the tensor product structure: there are 2l bosons of the type

ai =
(

xi 0
0 xi

)
, al+i =

(
0 xi

xn−2l+i 0

)
, i = 0, . . . , l − 1, (2.22)

where the 2 × 2 matrices aj describe φ1, and φ0 is then determined by (2.5). Likewise, there
are 2l fermions

ηi =
(

0 xi

xi 0

)
, ηl+i =

(
xi 0
0 xn−2l+i

)
, i = 0, . . . , l − 1, (2.23)

where the 2 × 2 matrices ηj describe t0, and t1 is then determined by (2.8). In the case that
n is even, the factorization l = n/2 is not irreducible. In fact, it is equivalent (in the sense of
(2.10)) to the direct sum of the rank 1 factorization

d0 = (
x

n
2 + y

)
, d1 = (

x
n
2 − y

)
, (2.24)

and its reverse. The physical open string spectrum of these rank 1 factorizations consists
of n/2 bosons (but no fermions); correspondingly there are n/2 fermions (but no bosons)
between the factorization (2.24) and its reverse.
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In conformal field theory, the rank 2 factorizations reviewed above correspond to the
boundary states [4]

||L, S〉〉 = (2k + 4)1/4
∑
l even

∑
ν=0,1

SLl√
S0l

e−iπνS |[l, 0, 2ν]〉〉. (2.25)

Here S is only defined modulo 2, and ||L, S〉〉 = ||k − L, S〉〉. As before, the identification
relates the factorization (2.21) to the boundary state with L = l − 1 and S = 0. (Recall that
n = k + 2.) These boundary states do not couple to RR states and are therefore equivalent to
their own anti-branes. (This is simply the statement that S is only defined modulo 2.)

If k is even, then the L = k/2 boundary state contains two vacua in its open string
spectrum and thus can further be resolved. The explicit form of the two resolved boundary
states is [14]

||k/2, S〉〉res = 1

2

(
||k/2, S〉〉 +

√
k + 2

∑
s=±1

e− π iSs
2 |[k/2, (k + 2)/2, s]〉〉

)
, (2.26)

where S is now defined mod 4, and ||k/2, S〉〉res and ||k/2, S + 2〉〉res are anti-branes of one
another. The two branes with S = 0 and S = 2 then correspond to the matrix factorization
(2.24) and its reverse, respectively.

We shall now construct the boundary states of the various GSO projections of the
D-model; in section 4 we shall discuss the corresponding matrix factorizations and identify
the two descriptions.

3. Boundary states for the D-model

The D-model is only defined if the level k is even. As before for the case of the A-type minimal
model there are two possible GSO projections one can consider. We begin by discussing the
theory that is analogous to type 0B. Its spectrum depends on whether k/2 is even or odd, i.e.
on whether k is divisible by 4 or not. In the former case, the spectrum is

H =
⊕

[l,m,s],l even

((H[l,m,s] ⊗ H̄[l,m,s]) ⊕ (H[l,m,s] ⊗ H̄[k−l,m,s])). (3.1)

On the other hand, if k/2 is odd the spectrum is

H =
⊕

[l,m,s],l even

((H[l,m,s] ⊗ H̄[l,m,s])) ⊕
⊕

[l,m,s],l odd

((H[l,m,s] ⊗ H̄[k−l,m,s])). (3.2)

We are interested in the B-type boundary states of this theory. In our conventions, the B-type
Ishibashi states are characterized by the gluing conditions (2.16). The structure of these
Ishibashi states (and thus the corresponding boundary states) depends on the two cases above,
and we shall therefore discuss them in turn.

3.1. The case k/2 odd

For k/2 odd, the theory (3.2) has the Ishibashi states

|[l, 0, s]〉〉 ∈ H[l,0,s] ⊗ H̄[l,0,s], (3.3)

where both l and s are even, and the Ishibashi states

|[l, (k + 2)/2, s]〉〉 ∈ H[l, k+2
2 ,s] ⊗ H̄[k−l, k+2

2 ,s] (3.4)

where both l and s are odd. In total there are therefore 2(k + 1) Ishibashi states of the coset
theory; they give rise to (k + 1) Ishibashi states of the N = 2 theory with one spin structure
η = +1, and (k + 1) Ishibashi states of the N = 2 algebra with the other η = −1.
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The corresponding boundary states are described by

||L,M, S〉〉 =
√

2k + 4

2


 ∑

l,s even

SLMS,l0s√
S000,l0s

|[l, 0, s]〉〉 +
∑

l,s odd

SLMS,l k+2
2 s√

S000,l k+2
2 s

|[l, (k + 2)/2, s]〉〉

 .

(3.5)

Here L + M + S is even, and we have the identifications

‖|L,M, S〉〉 = ||k − L,M + k + 2, S + 2〉〉 = ||k − L,M, S + 2〉〉
= ||L,M + 4, S〉〉 = ||L,M + 2, S + 2〉〉. (3.6)

For fixed spin structure η = +1 (corresponding to S = 0, 2), we have for every value of L
only two possible values of M, namely M = 0, 2 or M = 1, 3. Furthermore, because of the
last identification, of the four choices (S = 0, 2,M = 0, 2) or (S = 0, 2,M = 1, 3) only two
describe different boundary states. For L 
= k/2, the pair of boundary states with L and k − L

account therefore each for two different boundary states giving in total k different boundary
states. For L = k/2 on the other hand, it is easy to see that the second sum in (3.5) vanishes,
and thus ||k/2, +1, 0〉〉 = ||k/2,−1, 0〉〉, thus giving only one additional boundary state. In total
the above construction therefore gives k + 1 different boundary states of fixed spin structure,
and thus accounts for all the Ishibashi states.

These boundary states satisfy the Cardy condition since their overlap equals

〈〈L1,M1, S1||qL0+L̄0− c
12 ||L2,M2, S2〉〉 =

∑
[l,m,s]

χ(l,m,s)(q̃)δ(2)(S2 + s − S1)
(
NL2l

L1

× δ(4)(m − s + M2 − M1 − S2 + S1) + NL2k−l
L1δ(4)(m − s + M2 − M1 − S2 + S1 + 2)

)
.

(3.7)

Here NLl
L̂ denotes the level k fusion rules of su(2), and χ(l,m,s) is the character of the coset

representation. We note that the right-hand side is invariant under the field identification,
(l,m, s) �→ (k − l, m + k + 2, s + 2), as it must be.

3.1.1. Topological spectrum. It is now straightforward to read off the topological spectrum
between two such branes from this formula. If we consider only D-branes of a fixed spin
structure, we may set, without loss of generality, S = 0. Then we can restrict the open string
sum without loss of generality to the states with s = 0; then the topological states arise for
l = m.
For example, for the case L = L1 = L2 (and S1 = S2 = 0), the number of topological states
T is

M1 = M2 (bosons): |T | =
{
L + 2 if L is even
L + 1 if L is odd,

(3.8)

and

M1 = M2 + 2 (fermions): |T | =
{
L if L is even
L + 1 if L is odd.

(3.9)

Note that the boundary state corresponding to L = k/2 (which is an odd number) has the same
number of topological fermions and bosons in its open string spectrum.
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3.2. The case k/2 even

For k/2 even, the theory (3.1) has the (k + 2) Ishibashi states

|[l, 0, s]〉〉 ∈ H[l,0,s] ⊗ H̄[l,0,s], (3.10)

where l and s are both even, and the (k + 2) Ishibashi states

|[l, (k + 2)/2, s]〉〉 ∈ H[l, k+2
2 ,s] ⊗ H̄[k−l, k+2

2 ,s], (3.11)

where l is even and s is odd. In addition, there are the two Ishibashi states from the first sum
in (3.1)

|[k/2, (k + 2)/2, s〉〉 ∈ H[k/2, k+2
2 ,s] ⊗ H̄[k/2, k+2

2 ,s], s = ±1 (3.12)

and the two Ishibashi states from the second sum in (3.1)

|[k/2, 0, s〉〉 ∈ H[k/2,0,s] ⊗ H̄[k−k/2,0,s], s = 0, 2. (3.13)

In total there are therefore 2(k + 4) Ishibashi states of the coset theory; they give rise to (k + 4)

Ishibashi states of the N = 2 theory with one spin structure η = +1, and (k + 4) Ishibashi
states of the N = 2 algebra with the other η = −1.
The corresponding boundary states are described by

||L,M, S〉〉 =
√

2k + 4

2

∑
l even


∑

s even

SLMS,l0s√
S000,l0s

|[l, 0, s]〉〉 +
∑
s odd

SLMS,l k+2
2 s√

S000,l k+2
2 s

|[l, (k + 2)/2, s]〉〉

 .

(3.14)

Here L + M + S is even, and L 
= k/2. We have the identifications

||L,M, S〉〉 = ||k − L,M + k + 2, S + 2〉〉 = ||k − L,M, S〉〉
= ||L,M + 4, S〉〉 = ||L,M + 2, S + 2〉〉. (3.15)

For fixed spin structure η = +1 (corresponding to S = 0, 2), we have for every value of L
only two possible values of M, namely M = 0, 2 or M = 1, 3. Furthermore, because of the
last identification, of the four choices (S = 0, 2,M = 0, 2) or (S = 0, 2,M = 1, 3), only two
describe different boundary states. For L 
= k/2, the pair of boundary states with L and k − L

account therefore each for two different boundary states giving in total k different boundary
states. The remaining four boundary states correspond to the ‘resolved’ boundary states for
L = k/2, and will be described shortly.

These boundary states satisfy the Cardy condition since their overlap equals

〈〈L1,M1, S1||qL0+L̄0− c
12 ||L2,M2, S2〉〉 =

∑
[l,m,s]

χ(l,m,s)(q̃)δ(2)(S2 + s − S1)

× (
NL2l

L1 + NL2k−l
L1

)
δ(4)(m − s + M2 − M1 − S2 + S1). (3.16)

We observe again that the right-hand side is invariant under the field identification, (l,m, s) �→
(k − l, m + k + 2, s + 2), as it must be.

It is easy to see that the topological open string spectrum of these branes is described by
the same formulae as (3.8) and (3.9) above.

3.2.1. The resolved branes. The remaining boundary states are of the form

||k/2,M, S,±〉〉 = 1

2
||k/2,M, S〉〉(3.14) ±

√
2k + 4

4

×
(∑

s odd

eiπM/2 e−iπsS/2|[k/2, (k + 2)/2, s]〉〉 +
∑
s even

e−iπsS/2|[k/2, 0, s]〉〉
)

.

(3.17)
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Here M + S is even, and we have the same identifications as in the second line of (3.15). Thus
these boundary states account for four more boundary states (of a fixed spin structure).

One easily checks that the overlaps of these boundary states with the previously
constructed boundary states is simply

〈〈L1,M1, S1||qL0+L̄0− c
12 ||k/2,M2, S2,±〉〉 =

∑
[l,m,s]

χ(l,m,s)(q̃)

× δ(2)(S2 + s − S1)Nk/2l
L1δ(4)(m − s + M2 − M1 − S2 + S1). (3.18)

On the other hand, the overlaps involving two resolved branes is

〈〈k/2,M1, S1,±||qL0+L̄0− c
12 ||k/2,M2, S2,±〉〉 =

∑
[l,m,s] l=4n

χ(l,m,s)(q̃)

× δ(2)(S2 + s − S1)δ
(4)(m − s + M2 − M1 − S2 + S1), (3.19)

and

〈〈k/2,M1, S1,±||qL0+L̄0− c
12 ||k/2,M2, S2,∓〉〉 =

∑
[l,m,s] l=4n+2

χ(l,m,s)(q̃)δ(2)

× (S2 + s − S1)δ
(4)(m − s + M2 − M1 − S2 + S1). (3.20)

It is now straightforward to determine the topological open string spectrum of these branes.
As before, we may set, without loss of generality (if we restrict ourselves to a specific spin
structure) S1 = S2 = 0. Then the number of topological states on the +brane is

M1 = M2 (bosons): |T | = k

4
+ 1, (3.21)

M1 = M2 + 2 (fermions): |T | = 0. (3.22)

Obviously the result for the −brane is identical. On the other hand, the topological spectrum
between the +brane and the −brane is

M1 = M2: |T | = 0, (3.23)

M1 = M2 + 2: |T | = k

4
. (3.24)

3.3. The other GSO projection

As we mentioned before, we can also consider the 0A-like GSO projection. Then the spectrum
of the D-model is for k/2 even

H =
⊕

[l,m,s],l even

((H[l,m,s] ⊗ H̄[l,m,−s]) ⊕ (H[l,m,s] ⊗ H̄[k−l,m,−s])). (3.25)

On the other hand, if k/2 is odd, the spectrum is

H =
⊕

[l,m,s],l even

((H[l,m,s] ⊗ H̄[l,m,−s])) ⊕
⊕

[l,m,s],l odd

((H[l,m,s] ⊗ H̄[k−l,m,−s])). (3.26)

In both cases we have the k + 2 Ishibashi states

|[l, 0, s]〉〉 ∈ H[l,0,s] ⊗ H̄[l,0,−s], (3.27)

where l and s are both even, as well as the two Ishibashi states

|[k/2, 0, s]〉〉 ∈ H[k/2,0,s] ⊗ H̄[k/2,0,−s], k/2 + s = even. (3.28)
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We therefore expect to have k/2 + 2 boundary states of each spin structure. Some of these
boundary states are given by

||L, S〉〉 =
√

2k + 4
∑

l,s even

SL0S,l0s√
S000,l0s

|[l, 0, s]〉〉, (3.29)

where L = 0, 1, . . . , k with L 
= k/2 and S is defined modulo 4. We observe that

||L, S〉〉 = ||k − L, S〉〉 = ||L, S + 2〉〉. (3.30)

For fixed spin structure (say S even) there are thus k/2 such boundary states. Their overlap
equals

〈〈L1, S1||qL0+L̄0− c
12 ||L2, S2〉〉 =

∑
[l,m,s]

χ(l,m,s)(q̃)δ(2)(S2 + s − S1)
(
NL2l

L1 + NL2k−l
L1

)
.

Thus the open string spectrum on the brane ||L, S〉〉 has 2(L + 1) topological states; the same
is true for the open string between the ||L, S〉〉 brane and its anti-brane.

The remaining two boundary states are then

||k/2, S,±〉〉 = 1

2
||k/2, S〉〉(3.29) ±

√
k + 2

4

∑
s

e−iπSs/2|[k/2, 0, s]〉〉, (3.31)

where the sum over s runs over 0, 2 if k/2 is even, and over ±1 if k/2 is odd. For k/2 odd,
these two branes are anti-branes of one another, i.e. ||k/2, S, +〉〉 = ||k/2, S + 2,−〉〉, and their
overlaps equal

〈〈k/2, S1,±||qL0+L̄0− c
12 ||k/2, S2,±〉〉

=
∑

[l,m,s],l even

χ(l,m,s)(q̃)δ(2)(S2 + s − S1)δ
(4)(l + S2 + s − S1).

There are then (k + 2)/4 topological states in the open string spectrum of each of these
branes, and (k + 2)/4 topological states in the open string spectrum between the brane and the
anti-brane.

For k/2 even, on the other hand, each of the two branes ||k/2, S,±〉〉 = ||k/2, S + 2,±〉〉
is its own anti-brane. In this case their overlaps equal

〈〈k/2, S1,±||qL0+L̄0− c
12 ||k/2, S2,±〉〉 =

∑
[l,m,s]

χ(l,m,s)(q̃)δ(2)(S2 + s − S1)δ
(4)(l),

〈〈k/2, S1,±||qL0+L̄0− c
12 ||k/2, S2,∓〉〉 =

∑
[l,m,s]

χ(l,m,s)(q̃)δ(2)(S2 + s − S1)δ
(4)(l + 2).

In this case there are k/4 + 1 topological states in the open string spectrum of either of these
two branes, and k/4 topological states in the open string between the two different branes.

4. The matrix factorization description

We now want to describe the matrix factorizations that correspond to the above boundary
states. As for the case of the A-type minimal model, the two different GSO projections
correspond to two different superpotentials. We shall now discuss them in turn.
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4.1. The first D-model

The theory whose boundary states we discussed in sections 3.1 and 3.2 corresponds to the
superpotential

WD = xn+1 − xy2, (4.1)

where n = k/2. Its matrix factorizations have partially been studied in [4], but, as we shall see,
the list of factorizations given there is incomplete. If we include another class of factorizations,
we obtain perfect agreement with the conformal field theory results described above. Given that
these boundary states generate all boundary states of the superconformal field theory, we can
turn the argument around and conclude that we have identified all fundamental factorizations
for this potential, i.e. that any factorization is equivalent to a direct sum of these fundamental
factorizations.

4.1.1. Rank 1 factorizations. We start with a discussion of the rank 1 factorizations, all of
which have been discussed in [4]. The most obvious factorization is

R0: d0 = xn − y2, d1 = x, (4.2)

as well as its reverse. The bosonic spectrum of either factorization consists of two states,
whereas the fermionic spectrum is empty. The only boundary states with two bosons and no
fermions in their open string spectrum are the L = 0 and L = k boundary states of (3.5)
and (3.14), respectively. They must therefore correspond to the above factorization (and its
reverse).

Generically this is the only rank 1 factorization, but if n is even, there are in addition the
two resolved rank 1 factorizations, given by

R+: d0 = (xn/2 + y), d1 = x(xn/2 − y),

R−: d0 = x(xn/2 + y), d1 = (xn/2 − y),

as well as their reverses. Either of these factorizations has a purely bosonic spectrum consisting
of n/2+1 states, and there are n/2 fermionic operators propagating betweenR+ andR−. Given
that n/2 = k/4, this matches precisely with the spectrum of the resolved branes described in
section 3.2.1 that also only exist provided that k/2 is even.

4.1.2. Rank 2 factorizations. Next we turn to the rank 2 factorizations. In [4] the
factorizations of the form

d0 =
(

xl α

−β −xn+1−l

)
, d1 =

(
xn+1−l α

−β −xl

)
, αβ = xy2 (4.3)

were considered. Exchanging l with n + 1 − l amounts to exchanging d0 and d1, and hence
to considering the reverse factorization. The same holds for the exchange of α and β. The
only two inequivalent choices for α, β are therefore β = x or β = y. As was shown in [4]
the choice β = x leads to a class of factorizations that is equivalent to the direct sum of the
factorization (4.2) and its reverse. This leaves us with the factorizations

Sl : d0 =
(

xl xy

−y −xn+1−l

)
d1 =

(
xn+1−l xy

−y −xl

)
, (4.4)

where l = 1, . . . , n. One easily finds that the factorization Sl has 2l bosons and 2l fermions.
Comparing with the conformal field theory analysis, one would then like to identify the
factorization Sl with the boundary state (3.5) or (3.14) with L = 2l − 1. Note that
l �→ n + 1 − l, which maps the factorization to the reverse factorization, then corresponds to
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L = 2l − 1 �→ k − L, which maps the brane to the anti-brane. (If k/2 is even, the anti-brane
of ||L,M, 0〉〉 is ||k − L,M, 2〉〉, while for k/2 odd it is ||k − L,M, 0〉〉.)

As is clear from the conformal field theory analysis, the above factorizations do not yet
account for all branes since there are also the boundary states (3.5) or (3.14) with L even. The
corresponding class of factorizations can directly be obtained from the factorizations (2.21)
of the A-type minimal model with potential WA′ = xn − y2: since WD = x(xn − y2) = xWA′ ,
one obtains a factorization for the D-model by multiplying the matrix d1 of any A-model
factorization by x. This leads to the following factorizations:

Tl : dD
0 =

(
xl y

−y −xn−l

)
= dA′

0 , dD
1 =

(
xn−l+1 xy

−xy −xl+1

)
= xdA′

1 . (4.5)

Here l = 0, . . . , n, and the factorization Tl is equivalent to Tn−l , but neither is equivalent to T r
l .

We now propose that the factorization Tl corresponds to the boundary state (3.5) or (3.14) with
L = 2l. To confirm this proposal, we have to determine the spectrum of these factorizations.

The calculation of the fermionic part of the spectrum proceeds exactly as in the case of
the A-model. For this, consider a fermion described by its two components (t0, t1). BRST
invariance means that

t0d
D
1 = −dD

0 t1, (4.6)

which can be solved by

t1 = − 1

WD

dD
1 t0d

D
1 . (4.7)

This requires, of course, that the entries of the matrix appearing on the right-hand side are all
divisible by WD . In terms of the A-model data, this equation can be rewritten as

t1 = −x
x

WD

dA′
1 t0d

A′
1 = −x

1

WA′
dA′

1 t0d
A′
1 , (4.8)

where WD/x is the A-model potential WA′ . Without the additional factor of x on the right-
hand side, this condition is simply the A-model result, implying a divisibility condition for the
entries of the matrix dA′

1 t0d
A′
1 . Since x does not divide WA′ the divisibility conditions of the

A- and D-model are therefore equivalent.
Any solution for t0 is BRST trivial if

t0 = −φ1d
D
0 + d0φ

D
0 . (4.9)

Since dD
0 = dA′

0 it is obvious that the fermionic part of the spectrum for the A- and D-model
is the same for this class of factorizations. Thus there are 2l fermions for the factorization Tl .

Let us now turn to the bosonic spectrum. The condition for an operator (φ0, φ1) to be
BRST invariant is

dD
1 φ1 = φ0d

D
1 , (4.10)

which is the same condition as in the A-model. Solving for φ0, one obtains the divisibility
condition

φD
0 = 1

WD

dD
1 φ1d

D
0 = 1

WA′
dA′

1 φ1d
A′
0 , (4.11)

which is explicitly (since Tl ≡ Tn−l we may assume that l � n/2)

y
(
φ11

1 − φ22
1

)
+ xlφ21

1 − xn−lφ12
1 = 0 mod WA′ , (4.12)

where φ
ij

1 denote the matrix elements of the 2 × 2 matrix φ1. The possible solutions for φ1

are further restricted by the requirement that the operator is BRST non-trivial. BRST trivial
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operators can be written in the form (see (2.6))

φ11
1 = t11

0 xn−l+1 − t12
0 xy + xlt11

1 + yt21
1 (4.13)

φ12
1 = t11

0 xy − t12
0 xl+1 + xlt12

1 + yt22
1 (4.14)

φ21
1 = t21

0 xn−l+1 − t22
0 xy − yt11

1 − xn−l t21
1 (4.15)

φ22
1 = t21

0 xy − t22
0 xl+1 − yt12

1 − xn−l t22
1 . (4.16)

One can now use the freedom in t1 to restrict the powers of x appearing in the representatives
of the BRST cohomology classes to lie in the range 0, . . . , l − 1 (for φ11

1 and φ12
1 )) and

0, . . . , n − l − 1 (for φ21
1 and φ22

1 )). On the other hand, this then uses up the freedom
described by t1, and in particular, the y-dependence of the solution cannot be eliminated any
longer. Indeed, in addition to the obvious x-dependent solutions (that are as for the A-model,
see (2.22))

ai =
(

xi 0
0 xi

)
, al+i =

(
0 xi

xn−2l+i 0

)
, i = 0, . . . , l − 1, (4.17)

there are now the following two non-trivial solutions (for φ1)

b1 =
(

y 0
0 y

)
and b2 =

(
0 y

yxn−2l 0

)
. (4.18)

This means, in particular, that there are two more bosons than fermions for each factorization
Tl . This is then in perfect agreement with the conformal field theory spectra (3.8) and (3.9)
for the branes with L = 2l.

In summary, we therefore propose the identifications:

Boundary state Matrix factorization
||0,M, S〉〉 R0,Rr

0
||2l − 1,M, S〉〉 Sl ,Sr

l l = 1, . . . , [(n + 1)/2]
||2l,M, S〉〉 Tl , T r

l l = 0, . . . , [n/2]
||k/2,M, S,±〉〉 R±,Rr

± n even

As a consistency check we note that we have now identified the boundary state with L = 0
with two factorizations, namely with R0 and with T0. Thus we need to have that these two
factorizations are actually equivalent (in the sense of (2.10)), and this is indeed easily checked.
Furthermore, for k/2 = n even, the boundary state ||k/2,M, S〉〉 is not fundamental, but can
be resolved as explained in section 3.2.1. We have identified these resolved branes with the
factorizations R±; thus we expect that for n even the factorization Tn/2 is equivalent to the
direct sum of R+ and R−, and this is also straightforwardly confirmed.

Another consistency check concerns the various flows of D-brane configurations. By
switching on suitable tachyons, one can show that there are flows from the point of view of
the matrix factorization (such flows were first discussed, for the case of the A-model, in [16])

R0 ⊕ Rr
0 → S1 Sl ⊕ R0 → Tl Tl ⊕ Rr

0 → Sl+1.

These flows are easily seen to be compatible with the RR-charges of the corresponding
boundary states. They are also in agreement with what one expects based on the analysis of
[17]. Finally, we note that the L = 0-brane (together with the two resolved branes if n is
even) generates all D-brane charges since all D-branes (except for the resolved branes) can
be obtained from it by the above flows. The corresponding matrix factorizations of these
three D-branes all have rank 1. This is similar to the situation for the tensor product of two
A-models where the permutation branes (whose factorizations also have rank 1) generate all
the charges [13].
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4.2. The other D-model

Finally we consider the superpotential

WD′ = xn+1 − xy2 − z2 (4.19)

that should correspond, following the logic of [4], to the D-model with the other GSO
projection that was discussed in section 3.3. The easiest class of factorizations of this model is
of tensor product type: for any factorization of WD one obtains a factorization of WD′ , where
one factorizes z2 as z2 = zz. Since the spectrum on a brane with superpotential W = z2

consists of the identity φ0 = φ1 = 1 and a fermion t0 = −t1 = 1, it is very simple to calculate
the spectrum of these factorizations. The number of bosons is simply given by the sum of the
number of bosons and fermions of the corresponding factorization of the D-model WD . The
same holds for the number of fermions. In particular, the number of bosons always equals
the number of fermions for any factorization of this type.

We now propose that we can identify the boundary states (3.29) with these tensor product
factorizations. As is explained in section 3.3, each of these branes has 2(L + 1) topological
states in its open string spectrum (irrespective of whether L is even or odd), and the same is
true for the open string between the brane and its anti-brane. This then matches precisely with
the above spectrum of the corresponding tensor product factorizations, given our previous
identifications of the boundary states with the matrix factorizations for the WD model: in
particular, the sum of the number of bosons and fermions in (3.8) and (3.9) is precisely equal
to 2(L + 1) for all L.

The analysis works similarly for the two resolved branes ||k/2, S,±〉〉 for k/2 even. This
leaves us with identifying the resolved brane ||k/2, S,±〉〉 for n = k/2 odd, which does not
come from such a tensor factorization. For n odd there are however additional factorizations
of the form

d0 =
(

x
n+1

2 − z α

−β −(
x

n+1
2 + z

)
)

, d1 =
(

x
n+1

2 + z α

−β −(
x

n+1
2 − z

)
)

, αβ = xy2.

(4.20)

Exchanging α and β maps the factorization to its reverse, and thus effectively the only
inequivalent choices are β = x and β = y. As before for the case of the D-model, one may
expect that β = x is in some sense trivial, and indeed one can show that this factorization is
equivalent to the tensor product factorization corresponding to the D-model factorization R0,

d0 =
(

xn − y2 z

−z −x

)
, d1 =

(
x z

−z −(xn − y2)

)
. (4.21)

On the other hand, the topological spectrum of the factorization (4.20) with β = y has (n+1)/2
bosonic and fermionic states, which thus agrees with the result of section 3.3.

We have therefore also managed to identify the boundary states of this D-model with
the factorizations of the superpotential WD′ . Since we know that the boundary states we
have described generate all possible boundary states, the same must be true for the above
factorizations.

5. Matrix factorizations and singularity theory

Matrix factorizations are also a well-known tool in the theory of singularities in mathematics.
In the case of complex dimension two, the simple singularities are known to have an ADE
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classification. The relevant singularities are described by hypersurfaces in C
3 characterized

by the equations2

An−1: W = xn − yz = 0

Dn+2: W = xn+1 − xy2 − z2 = 0

E6: W = x4 + y3 + z2 = 0

E7: W = yx3 + y3 + z2 = 0

E8: W = x5 + y3 + z2 = 0.

(5.1)

The resolution of the singularities is obtained by blow-ups, where each node of the associated
ADE Dynkin diagram corresponds to an exceptional divisor. For the case of these simple
surface singularities, the explicit description of the blow-up can be encoded in a matrix
factorization of the polynomial W defining the hypersurface [18–20].

D-branes on such singular geometries have recently been discussed in [9]. There it was
proposed to define a category DSg that is supposed to capture the topological sector of B-type
branes on singular spaces. On smooth manifolds, any coherent sheaf has a finite resolution
of locally free sheaves of finite type. On singular spaces this is no longer the case and Orlov
defined DSg to be the quotient of the bounded derived category of coherent sheaves modulo
those sheaves that have such a finite resolution. It is shown in [9] that this category is equivalent
to the category of matrix factorizations; in particular, any object in DSg corresponds to a matrix
factorization, and the open string spectrum that is described in DSg in terms of morphisms
of modules describing the branes, corresponds exactly to the BRST invariant spectrum of the
Landau Ginzburg theory. More precisely, consider a Landau Ginzburg potential W : C

n → C

with an isolated critical point at the origin. (In our case the relevant LG potentials are
WADE : C

3 → C, and thus describe precisely the singular hupersurfaces of (5.1).) Denoting
the fibre of W over 0 by S0, [9] allows us to establish a relation between DSg(S0) and the
Landau Ginzburg category. For this, we associate with any factorization W = d0d1(

P1

d1−−−→←−−−
d0

P0

)

the short exact sequence

0 −→ P1
d1−→ P0 −→ Coker d1 −→ 0. (5.2)

The geometrical object associated with the factorization is then the sheaf Coker d1, which,
since it is annihilated by W , is a sheaf on S0. For further details on this functor and mathematical
proofs, we refer to [9].

5.1. Singular geometry versus Landau Ginzburg model

As we have just seen, the very same matrix factorizations that describe B-type D-branes in the
Landau Ginzburg theory with superpotential W also characterize the B-type D-branes of the
singular hypersurface W = 0 and its possible resolutions. Despite their formal similarities,
these two descriptions are however rather different: string theory on the singular geometry is,
in sigma-model language, a singular limit of a theory with c = 6 that has no well-behaved
conformal field theory description. On the other hand, the Landau Ginzburg model flows
to a perfectly well-defined conformal field theory, namely the N = 2 minimal model with
c = 3k/(k + 2).

2 By a change of variables one can also rewrite the first equation as W = xn − y2 − z2 = 0.
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From the closed string point of view the relation between singular geometries and N = 2
conformal field theories has been studied before in [21–24]. In particular, characteristic
properties of the Landau Ginzburg model, such as the central charge and the chiral ring,
have been compared with concepts appearing in singularity theory (singularity index, local
ring of W ). The agreement of the matrix factorizations thus provides a natural extension
of this correspondence to the open string sector. Since the matrix factorizations determine
(the topological part of the) open string spectrum, this may even suggest that the B-type
D-branes of the Landau Ginzburg model (or of the N = 2 minimal model) provide a worldsheet
description of the D-branes that become massless in the singular geometry.

5.2. Singular geometry versus the orbifold description

String theory compactified on a singular surface does not have a well-defined perturbation
theory since at the singular point non-perturbative (D-brane) states become massless. However,
it is possible to give a well-defined conformal field theory description for a closely related
background where a nonzero B-field has been switched on for all singular cycles. (This
B-field prevents the D-branes from becoming massless in the singular limit, and therefore
avoids the breakdown of string perturbation theory [25, 26].) The relevant conformal field
theory is the orbifold theory C

2/�, where � is a finite subgroup of SU(2). Orbifold theories
are well behaved, and it is known how to describe their D-branes. In particular, following
[10], the different D-branes are in essence characterized by the representation of the orbifold
group � that acts on the corresponding Chan-Paton indices. The charges are then generated
by the branes that are associated with the non-trivial irreducible representations of �. If we
associate with each such representation a node of a (Dynkin) diagram, and connect nodes if
the open string between the corresponding D-branes has a (massless) hypermultiplet in its
spectrum, we recover precisely again the corresponding ADE Dynkin diagrams. Furthermore,
the dimension of the irreducible representation of � equals the Kac-label of the corresponding
node. This suggests, in particular, that the orbifold description captures at least some of the
structure of the geometry described by W = 0.

Since the fundamental D-branes of the orbifold theory also give rise to the same ADE
Dynkin diagram, they should be in natural one-to-one correspondence with the matrix
factorizations of the LG potential3. In fact this relation can be understood fairly directly.
As described in [27] following the ideas of [19, 20], for each irreducible representation of �

one can find a module of the �-invariant part of C[X, Y ]. Unless the representation of � is
trivial, these modules are not free, and the relations among the generators of the module can
be described by a matrix. This is then precisely the matrix that appears as one factor of the
matrix factorization. For the two cases of interest in this paper, this can be done explicitly as
follows.

5.2.1. A-type singularity. In the case of A-type singularities, the generator of the orbifold
group acts on C

2 as

gX = ξX, gY = ξ−1Y, ξ = e
2π i
n . (5.3)

The singular surface can be described by the polynomial subring in the two variables X, Y that
is invariant under the orbifold action. This invariant subring is generated by x = XY, y = Yn

and z = Xn. These polynomials are however not independent, but satisfy the equation
xn − yz = 0, which is just the singular hypersurface equation of the A-type singularity.

3 However, the open string spectra should not (and do not) agree: because of the resolution certain massless open
string states of the Landau Ginzburg theory become massive in the orbifold theory.
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The orbifold group � is in this case Zn, which has n − 1 irreducible non-trivial
representations. All of these representations are one-dimensional: for l = 1, . . . , n − 1
the corresponding representation associates with the generating element g ∈ � the phase e

2π il
n .

These n − 1 representations are then in one-to-one correspondence to the matrix
factorizations of the Landau Ginzburg potential (2.13), or equivalently, the boundary states
of the minimal model (2.15), whose label take values L = l − 1 = 0, . . . , k = n − 2.4 As
explained in [27] we can associate with each representation of � a module for the invariant
part of the polynomial ring in two variables. For example, for the representation labelled by
l the corresponding module is generated by Xl and Yn−l . This is not a free module since we
have the relations between the generators s1 = Yn−l , s2 = Xl :

xls1 − ys2 = 0, −zs1 + xn−ls2 = 0. (5.4)

The matrix of relations

d1 =
(

xl −y

−z xn−l

)
(5.5)

is then one of the matrices appearing in the matrix factorization. Conversely, we can apply
the functor of Orlov and recover the module (and thus the representation of �) from the
factorization.

5.2.2. D-type singularity. The D-type minimal model corresponds to the case where the
orbifold is a binary dihedral group. Its two generators act on C

2 as

g =
(

β 0
0 β−1

)
, h =

(
0 1

−1 0

)
, where β = e

π i
n (5.6)

and satisfy the relations

g2n = 1, h2 = gn, hgh−1 = g−1. (5.7)

The ring of invariant polynomials under the group is generated by

x = (XY )2, y = 1

2
(X2n + Y 2n), z = i

2
(XY )(X2n − Y 2n), (5.8)

which satisfy the D-type hypersurface equation xn+1 − xy2 − z2 = 0. Generically, the
irreducible representations of this group are two dimensional, with

ρ(l)(g) =
(

βl 0
0 β−l

)
(5.9)

and

ρ(l)(h) =
(

0 1
−1 0

)
(l odd), ρ(l)(h) =

(
0 i
−i 0

)
(l even). (5.10)

Here l = 0, 1, . . . , 2n−1, and the representations ρ(l) and ρ(2n−l) are equivalent. Furthermore,
the representations ρ(0) and ρ(n) are not irreducible but can be further decomposed into
one-dimensional representations: ρ(0) contains the trivial representation and the one where
g → 1, h → −1. Likewise, ρ(n) can be decomposed into the two one dimensional irreducible
representations g → −1 and h → ±1 (l even) or h → ±i (l odd).

These representations are exactly in one-to-one correspondence with the boundary states
of section 3.3, or equivalently the matrix factorizations of section 4.2. More explicitly,

4 The superpotential W = xn − yz (that is equivalent by a change of variables to W = xn − y2 − z2) differs from
WA = xn by changing the GSO projection twice. One would therefore expect that these two superpotentials are
equivalent. From the point of view of singularity theory this equivalence is known as Knörrer periodicity [28].
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the representation ρ(l) precisely corresponds to the boundary state with L = l. Since
n = k/2, the reducible representation ρ(n) corresponds then to the non-fundamental brane
with L = k/2 which can be resolved into two boundary states (that correspond in turn to the
two one-dimensional representations with g �→ −1). Also the identification ρ(l) � ρ(2n−l)

mirrors the equivalence of boundary states (3.30). As in the A-case, one can also relate
these representations to certain modules of the invariant algebra C[X, Y ]� , and obtain the
corresponding matrix factorizations in this manner (see [27]). It is maybe remarkable that the
blow-ups that correspond to the one-dimensional representations of � are quite different to
those that are associated with the two-dimensional representations.

For completeness we should also mention yet another class of models with c = 6
describing the motion of strings on ALE spaces. In this approach (which is due to [29]), the
minimal models are tensored with another theory that contributes the missing central charge
to get c = 6. To be more precise, [29] consider the tensor product of two coset theories
SL(2, R)/U(1) × SU(2)/U(1), and orbifold by an appropriate discrete group to impose the
charge integrality condition. In terms of Landau Ginzburg potentials, these models can be
written as

An−1: W = −µt−n + xn − yz = 0

Dn/2+1: W = −µt−n + xn/2 − xy2 − z2 = 0,
(5.11)

which are again subject to an integer charge projection. As argued in [29], the value of the
B-field in these models is 0, but now µ 
= 0, and we are therefore discussing the resolved
geometry. The D-branes of this model have been investigated in [30, 31]. If one wants to
consider B-type D-branes in these models, one can effectively reduce the discussion to A-type
D-branes in the minimal model part. The reason is that the orbifold procedure (followed by
the mirror map) maps A-type to B-type branes, and, as noted in [30, 31], the contribution of
the non-compact coset can be captured by universal factors. Since this description effectively
involves the A-type D-branes of the minimal model, the relation to matrix factorizations and
branes in the singular geometry is however less evident.
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